Machine Learning

Dr Tamara Clelford

To download a copy of the slides go to https://tamaraclelford.co.uk/iop.html

INTRODUCTION TO DATA SCIENCE

• What is data science

• Examples from my work

Data science workflow walkthrough

IS DATA SCIENCE: "THE SEXIEST JOB OF THE 21ST CENTURY"?

 In 2012 the Harvard Business Review described data science as being 'The sexiest job of the 21st Century'

• 'Data will be the raw material of the 21st Century' Angela Merkel, German Chancellor, Davos 2018

WHAT IS THIS THING CALLED DATA SCIENCE?

WIKIPEDIA The Free Encyclopedia

Main page Contents Featured content Current events Random article Article Talk

Data science

From Wikipedia, the free encyclopedia

Not to be confused with information science.

Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured,^{[1][2]} similar to data mining.

Dr TAMARA CLELFORD

Read

Edit

💄 Not I

View

WHAT IS THIS THING CALLED DATA SCIENCE?

- Any data can be looked at, multiple data sets used
 - Structured, unstructured, numbers, words, clicks, actions, images
- Multi-disciplinary
 - Part physics, statistics, maths, computer science, coding, big data, business
- Clean data before use
 - Removes incorrect and partial data
- Uses scientific methods and algorithms
 - Coding, decision trees, machine learning, neural networks
- Extracts knowledge and insights from data
 - The output is verified as being plausible

THE VENN DIAGRAM OF DATA SCIENCE

https://www.needpix.com/photo/920796/mountain-telescopehawaii-summit-astronomy-astrophysics-mauna-kea-kecktelescope-subaru-telescope Dr TA

HOUSE OCCUPANCY CALCULATIONS

House Occupancy (red=asleep, green=in, orange=out)

SWAMPHEN ENTERPRISES

COMMERCIAL EXAMPLES OF DATA SCIENCE

- Business analytics
- Recommender engines
- Online advertisements
- Financial predictions
- Internet of Things
- Diagnostics
- Kaggle competitions

THE RISE OF DATA SCIENCE

- As more data is collected in all walks of life the need to analyse this data and find it's hidden secrets becomes increasingly important
- Blurred line between engineer, statistician, data analyst, data scientist, data engineer, business analyst
- People from different backgrounds are re-training and becoming data scientists

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

SWAMPHEN ENTERPRISE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
 - 5. Need more data? -
- → 6. Clean data set
 - 7. Setup model
 - 8. Evaluate model
 - 9. Calculate results
 - 10. Present results

SWAMPHEN ENTERPRISE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

SWAMPHEN ENTERPRISE

SURVIVAL OF THE BEST DATA

By F.G.O. Stuart (1843-1923) - http://www.uwants.com/viewthread.php?tid=3817223&extra=page%3D1, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2990792

SWAMPHEN ENTERPRISES

SWAMPHE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

2) SET UP DATA SCIENCE TOOLS

Python programming language
Toolboxes such as NumPy, pandas and scikit-learn

Integrated Development Environment (IDE)
Jupyter notebook style
Google Colab

GO TO GOOGLE COLAB https://colab.research.google.com

	Google	google colab							پ Q	
		All	News	Images	Videos	Books	More	Settings	Tools	
		About	40,100,000) results (0.34	4 seconds)					
		Hello, Colaboratory - Colaboratory - Google								
		https://colab.research.google.com/ ▼								
		To load a specific notebook from github, append the github path to http://colab.								
		research.google.com/github/. For example to load this notebook in Colab:								

You've visited this page 2 times. Last visit: 15/03/19

Welcome To Colaboratory

Colaboratory is a free Jupyter notebook environment that ...

Colaboratory – Google

SWAMPHEN ENTERPRISES

What is Colaboratory? Colaboratory is a research tool ...

Overview of Colaboratory

Colaboratory is built on top of Jupyter Notebook. Below are ...

Run in Google Colab

View on TensorFlow.org, Run in Google Colab, View source on ...

OPEN A NEW PYTHON 3 NOTEBOOK

2) SETUP DATA SCIENCE TOOLS

- *# open up google colab*
- 2 # open a python 3 notebook and rename to 'Titanic_analysis'
- *# import packages going to use*
- **import** numpy **as** np
- **import** pandas **as** pd
- **import** matplotlib.pyplot **as** plt

SWAMPHE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

3) GET DATA

1 # import the data to google colab

- 2 from google.colab import files
- 3 uploaded = files.upload()

SWAMPHE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

4) LOOK AT YOUR DATA SET

- Important step to get an understanding of the data
 - If you don't understand your data set it will be hard to get insights from it

• Check that is has been read in correctly

Look at raw data and plot things to help understanding

TITANIC DATA INVESTIGATION

1 # how many rows in the data set 2 len(raw_data)

1 # import data set
2 raw_data = pd.read_csv('titanic.csv')

```
1 # print out the headder
2 raw_data.head()
3 # try putting a number in the brackets
4 # what does .tail() do?
```

1 # get basic shape information

2 raw_data.shape

print out a selection of the data
raw_data[20:25][['Name']]

- 1 # sort wrt one column
- 2 raw_data.sort_values('Fare')
- 1 # calculate average fare
- np.mean(raw_data['Fare'])


```
1 # describe data set - nothing with letters in the result
2 raw_data.describe()
```

```
1 # get the range of ages on board
2 age_female = raw_data.loc[raw_data['Sex'] == 'female', 'Age']
3 age_male = raw_data.loc[raw_data['Sex'] == 'male', 'Age']
4 print(age_female)
5 print(age_male)
```

```
1 # Look at the range of ages on board, often scatter graph, but not in this case
2 fig, graph = plt.subplots()
3 graph.hist([age_female, age_male])
```

```
1 # graph options
2 fig, graph = plt.subplots()
3 graph.hist([age_female, age_male], color = ['b','g'], label = ['female', 'male'])
4 # pick any colours to use from b, g, k, r, c, m, y, w
5 # print out the axis labels
6 graph.set_ylabel("number of people")
7 graph.set_xlabel("age (y)")
8 # add the legend
9 plt.legend(loc = 'best')
10 # move the legend around, options are:
11 # upper left, upper right, lower left, lower right, best, upper center, lower center,
12 # center left, center right
```

SWAMPHEN ENTERPRISES

```
Dr TAMARA CLELFORD
```

SWAMPHE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results


```
5) NEED MORE DATA?
```

```
1 # we want to be able to include gender information
2 # change female = 1, male = 0
3 raw_data['GenderNumerical'] = raw_data.apply(lambda row:1 if row.Sex == 'female' else 0, axis = 1)
4 raw_data.head()
```

```
1 # describe the data set again
2 raw_data.describe()
```


SWAMPHE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

6) CLEAN DATA SET

- This is where most of your time is spent as a data scientist
- Need to ensure you do not introduce bias or errors to the data set during cleaning
- Examples of cleaning practices:
 - Remove lines with missing data
 - Use an average to fill missing data
 - Use a different data set to fill missing data
 - Interpolate between points

6) CLEAN DATA SET

1 raw_data.head(7)

1 # pick data want to include 2 include = ['Survived', 'Pclass', 'Age', 'GenderNumerical', 'Fare']

1 # check include 2 raw_data[include]

1 # remove nans

2 data_set = raw_data[include].dropna()

```
1 # check removal of nans
```

- 2 data_set.head(7)
- 3 data_set[-5:]

SWAMPHEN ENTERPRISES

SWAMPHE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

- Al is getting computers to behave like humans
- ML is an application of AI
 - gives the ML code access to data and lets it learn for itself
- Two categories of ML:
 - Supervised
 - decision trees, random forests, linear regression, Gaussian regression, Bayesian statistics
 - Unsupervised

SWAMPHEN ENTERPRISES

 clustering, k-means, anomaly detection, neural networks, method of moments

TAMARA CI FI FO

SWAMPHEN ENTERPRISES

7) SET UP MODEL

1 *# import decision tree*

2 **from** sklearn **import** tree

1 *# set up the model*

2 tree_model = tree.DecisionTreeClassifier(random_state = 42)

1 *# run the model on our data*

```
2 titanic_tree = tree_model.fit(data, answer)
```

```
3 print(titanic_tree)
```

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

8) EVALUATE MODEL

- 1 *# see how good model is at predicting survival*
- 2 **from** sklearn.model_selection **import** cross_val_score **as** CVS
- 3 scores_tree = CVS(titanic_tree, data, answer)
- 4 print(scores_tree)
- 5 print(np.mean(scores_tree))

DECISION TREE

SWAMPHEN ENTERPRISES

SWAMPHE

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

7) SET UP MODEL

- 1 # select data for random forest
- 2 include
- 3 include[1:]
- 4 data = data_set[include[1:]]
- 5 answer = data_set['Survived']

1 *# import random forest*

2 **from** sklearn.ensemble **import** RandomForestClassifier **as** RFC

Dr TAMARA CLELFORD

1 *# create the model*

- 2 forest_model = RFC(n_estimators=100)
- 1 # run the model on the data
- 2 titanic_forest = forest_model.fit(data, answer)
- 3 print(titanic_forest)

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

CROSS VALIDATION SCORE

- Splits data randomly into k sections (fold)
- Model is fitted on k-1 of sections training data
- Model is evaluated on remaining section testing data

Dr TAMARA CLELFORD

• Repeated k times

CROSS VALIDATION SCORE

	DATA SET SPLIT				
FOLD 1	1	2	3		
FOLD 2	1	2	3		
FOLD 3	1	2	3		

TRAINING DATA TESTING DATA

8) EVALUATE

1 # see how good model is at predicting survival

- 2 from sklearn.model_selection import cross_val_score as CVS
- 3 scores_forest = CVS(titanic_forest, data, answer)
- 4 print(scores_forest)
- 5 print(np.mean(scores_forest))

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

9) CALCULATE RESULTS

1 # choose a person to see if they survived 2 pclass = np.mean(data_set['Pclass']) # 2.5 3 age = np.mean(data_set['Age']) # 29.7 years 4 gender = np.mean(data_set['GenderNumerical']) # 0.37 5 fare = np.mean(data_set['Fare']) # £34.69

1 # put person data into an array 2 person = np.array([[pclass, age, gender, fare]]) 3 print(person)

- 1 # calculate survival score
- 2 survival_score = titanic_forest.predict_proba(person)
- 3 print(survival_score)

SWAMPHEN ENTERPRISES

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results
- 10. Present results

10) PRESENT RESULTS

1 # did the person survive the sinking of the titanic? 2 print({'survival chances': survival_score[0,1]*100, 'death chances': survival_score[0,0]*100})

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results ←
 10. Present results ←

9) CALCULATE RESULTS

```
1 # how does age and gender alter survival chances
2 # create a list covering all ages on the titanic
3 age_max = int(np.max(data_set['Age']))
4 print(age_max)
5 age_list = list(range(0, age_max + 1))
6 print(age list)
```

```
1 # to look at survival probability
2 survival = []
3 selected_class = 1
4 average_fare = np.mean(data_set['Fare'])
5 gender = 1
6 for i in age_list:
7 person = np.array([[selected_class, i, gender, average_fare]])
8 survival_chances = titanic_forest.predict_proba(person)
9 survival.append(survival_chances[0,1]*100)
```

```
1 # to look at male and female survival probability
 2 survival_female = []
 3 survival_male = []
 4 selected_class = 2
 5 average_fare = np.mean(data_set['Fare'])
 6 gender_list = [0,1]
7 for i in age list:
       for j in gender list:
 8
 9
           if j == 1:
               array = survival_female
10
11
            else:
                array = survival male
12
           person = np.array([[selected_class, i, j, average_fare]])
13
            survival_chances = titanic_forest.predict_proba(person)
14
            array.append(survival_chances[0,1]*100)
15
16 len(survival female)
```

SWAMPHEN ENTERPRISES

- 1. Identify requirement
- 2. Setup data science tools
- 3. Get data
- 4. Look at data
- 5. Need more data?
- 6. Clean data set
- 7. Setup model
- 8. Evaluate model
- 9. Calculate results -
- 10. Present results

10) PRESENT RESULTS

```
1 # plot just survival
2 plt.plot(age_list, survival)
3 plt.title('survival in ' + str(selected_class) + ' class')
4 plt.xlabel('age (y)')
5 plt.ylabel('survival chances (%)')
```

```
1 # plot male and female survival chances
2 plt.plot(age_list, survival_female, label = 'female')
3 plt.plot(age_list, survival_male, label = 'male')
4 plt.title('survival in ' + str(selected_class) + ' class')
5 plt.xlabel('age (y)')
6 plt.ylabel('survival chances (%)')
7 plt.legend()
```

Dr TAMARA CI FI FORD

SO, IS DATA SCIENCE: "THE SEXIEST JOB OF THE 21ST CENTURY"?

- It is certainly a job with its profile on the rise
- Analytical role with varied and interesting work
- Data Science is a well paid and sought-after skill set
 a lot of people are re-training or re-branding
- It covers a skill set desperately needed in this new digital world
- It needs people with good analytical skills to champion
 its evolution as a numerical science

HOW DO I LEARN MORE?

- Learn to program in Python
- Get to grips with the data science packages
 - NumPy, pandas and scikit-learn
- Brush up on your stats
- Understand the business you want to work in
- Practice!!

QUESTIONS!

https://tamaraclelford.co.uk/online_courses.html

